Ketamine Clinic: Inception to Infusion

Tracy P. Young MSNA, MBA, CRNA
Conflict of Interest Disclosure Statement

Cornerstone Anesthesia Conference 2019
Tracy P. Young MSNA, MBA, CRNA

• I have the following financial relationships to disclose:
 • I am a Partner in Neuromend Infusion Center, LLC.

• I will discuss the following off-label use during my presentation:
 • Ketamine infusion for non-anesthetic use
Objectives

- Identify the history of Ketamine
- Discuss the abuse potential for Ketamine
- Describe the mechanism of action of Ketamine
- Discuss common and alternative uses of Ketamine
- Identify studies looking at alternative Ketamine use
- Discuss protocols for Ketamine infusion therapy
What is Ketamine?

In 1823, Lord Byron wrote in canto 14 of his poem Don Juan “‘Tis strange—but true; for truth is always strange; stranger than fiction.”

• Ketamine is a phencyclidine (PCP) derivative
• Classified as an anesthetic and is a schedule III drug in the US
• Depending on dosage, produces a Trance-Like state, pain relief, sedation and memory loss
• Also widely used in veterinary medicine
Chemical Compound of Ketamine

Systematic (IUPAC) name

(RS)-2-(2-Chlorophenyl)-2-((methylamino)cyclohexanone
The History of Ketamine

• First synthesized in 1962 by American Scientist Calvin Stevens.

• Originally named CI-581 and was intended as an anesthesia drug.

• Derived as a derivative of PCP which was first synthesized in 1926.

• Ketamine was intended to replace PCP because PCP caused prolonged and severe hallucinations and psychotic symptoms.
The History of Ketamine

• First clinical use was in Belgium in 1963 as a veterinary anesthetic.

• First Human testing was in 1964 where it was found to have a shorter duration and less hallucinogenic side effects than PCP.

• First known recreational use of Ketamine was in 1965 by noted Professor Edward Domino who noted potent psychedelic effects and coined the term “Dissociative Anesthetic”.
Story of Early Ketamine Abuse

Dr. Domino published an intriguing tale about the early days of Ketamine in “Anesthesiology: The Journal of the American Society of Anesthesiologist” in 2010 named “Taming the Ketamine Tiger”.

One such story involved Marcia Moore, a yoga instructor, and Dr. Howard Alltounian, a respected clinical Anesthesiologist, and how they met through self administration of Ketamine in 1978.

The Ketamine Tiger
Ketamine Addiction

- **Ketamine**—also referred to as Special K, Kit Kat, cat valium, Dorothy or Vitamin K—is an anesthetic for humans and animals that is abused as a recreational drug. It is especially popular in the club scene among young adults.

- **Ketamine** is a Schedule III Controlled Substance, the same category as codeine and anabolic steroids. Schedule III substances can lead to physical dependence, but are very likely to lead to psychological dependence.

- **Ketamine** has a short-lived high and tolerance to the drug builds up quickly, requiring user to keep increasing quantities as they chase the initial high.

- **Ketamine** is produced as a liquid, which can be injected; as a white or off-white powder, which is snorted by abusers; or as a pill. It has been used as a date rape drug because it is odorless and colorless and is not detected by the victim in a beverage, often rendering its victim completely helpless.
Current Ketamine Abuse

74 percent
According to the Department of Justice’s National Drug Intelligence Center, individuals aged 12 to 25 accounted for 74 percent of the ketamine emergency department visits in the United States in the year 2000.

2.3 million
According to the 2013 National Survey on Drug Use and Health in the United States, an estimated 2.3 million people aged 12 or older used ketamine in their lifetimes, with 203,000 users in 2013.

3 percent
In 2006, the University of Michigan’s Monitoring the Future survey showed three percent of high school seniors had used the drug at least once that year.
Mechanism of Action of Ketamine

• The focus of all modern drug development has been on specificity and affinity. Scientists strive to isolate compounds that interact specifically with targeted receptors and have a high degree of binding to the target receptors.

• This produces “Clean” drugs that produce consistent actions and limited adverse reactions or side effects that could occur from multiple receptor stimulation.
Mechanism of Action of Ketamine

Known actions of ketamine include:

- **Non-competitive antagonist** of the NMDA receptor (NMDAR)
- **Negative allosteric modulator** of the nACh receptor
- Weak **agonist** of the μ-opioid and κ-opioid receptors (10- and 20-fold less affinity relative to NMDAR, respectively), and very weak agonist of the δ-opioid receptor
- Agonist of the D_2 receptor
- Weak **mACh receptor** antagonist (10- to 20-fold less affinity relative to NMDAR)
- **Inhibitor** of the reuptake of serotonin, dopamine, and norepinephrine
- **Voltage-gated sodium channel** and L-type calcium channel blocker, and HCN1 channel blocker
- **Inhibitor** of nitric oxide synthase
- σ receptor 1 and 2 agonist (μM affinities).
- Activation of AMPA receptors (producing Glutamate surge)
Depression Mechanism of Action:

Scientist think they have isolated the series of reactions that produces ketamine’s rapid relieve of refractory depression in a large number of test subjects.

The activation of AMPA receptors which is part of the glutamate receptor complex is now thought by some scientist to be the mechanism of action that rapidly relieves patients of severe refractory depression.
Ketamine Mechanism of Action on Depression
Ketamine Mechanism of Action for Depression

• Synaptic and intracellular processes activated by the rapid-acting antidepressant ketamine. Preliminary preclinical and unpublished clinical data suggest that postsynaptic NMDA receptor antagonism increases presynaptic glutamate release (i.e., glutamate “surge”). Glutamate is then hypothesized to increase AMPA/NMDA receptor flux. AMPA channel opening in the CNS increases sodium and, indirectly, calcium, stimulating the PI3K cascade.

• In sum, the translational activation induced by acute NMDA receptor blockade increases the expression of several neuromodulatory proteins involved in, among other effects, postsynaptic scaffolding, neurotransmitter dynamics, and dendritic spine morphogenesis from synaptically unstable filopodia to synaptically dynamic mushroom-shaped spines (see previous image), which form the morphological substrate for antidepressant-like behavioral effects.
Ketamine Mechanism of Action for Depression

While glutamate surge is still considered the primary mechanism of action in relieving depression, new studies have looked at how or why glutamate and ketamine is effective.

Scientist in China are looking at a region of the brain called the lateral habenula (LHb) which acts as the dark twin of the pleasure centers of the brain.

In depressed rats, the LHb was hyperactive and often sent burst signals to the rest of the brain. After an injection of ketamine into the LHb reduced the amount of burst signals being sent.

Ketamine blocks bursting in the lateral habenula to rapidly relieve depression: Yan Yang, Yihui Cui, Kangning Sang, Yiyan Dong, Zheyi Ni, Shuangshuang Ma & Hailan Hu

Nature volume554, pages317–322 (15 February 2018)
Ketamine Effect on CNS

• The NMDAR antagonism is responsible for the anesthetic, amnestic, dissociative, and hallucinogenic effects of Ketamine.

• NMDAR antagonism is also responsible for some of the analgesic properties of Ketamine by preventing central sensitization in the dorsal horn neurons, thus preventing the transmission of pain signals through the spinal cord.

• Ketamine also inhibits the synthesis of nitric oxide synthase which lowers the production of nitric oxide which is a neurotransmitter involved in pain perception.

• The action of Ketamine at sigma and mu opioid receptors is relatively weak but also aids in the analgesic properties.
Ketamine Effects on the PNS

Ketamine also has catecholaminergic effects by inhibiting the reuptake of serotonin, dopamine and nor-epinephrine.

• Cardiovascular effects are often an increase in BP, increase in HR and increased Cardiac Output.

• Gastrointestinal effects of serotonin reuptake inhibition is thought to cause the N&V seen in higher doses

• Respiratory effects are lack of respiratory depression, increased salivation and potential bronchodilator effects secondary to catecholamine elevation.
Pharmacokinetics of Ketamine

• Ketamine is absorbable IV, IM, Oral and Topically due to its water and lipid solubility.
• It is commercially prepared for IV, IM and intranasal use. Rarely used orally due to bioavailability of only around 20% due to first pass effect
• Peak plasma concentrations are reached in 1 minute IV, 5-15 Minutes IM, 30 minutes PO
• Intranasal administration associated with rapid onset and increased bioavailability over PO.
Pharmacokinetics of Ketamine

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Half-Life</td>
<td>• 2.5-3 Hours</td>
</tr>
<tr>
<td>Duration of Action</td>
<td>• Typically less than 1 Hour IV</td>
</tr>
<tr>
<td>• IV/IM</td>
<td>• Up to 2 Hours for IM Administration</td>
</tr>
<tr>
<td>Metabolized</td>
<td>• Primarily by the Liver</td>
</tr>
<tr>
<td></td>
<td>• Has Several Active Less Potent Metabolites</td>
</tr>
<tr>
<td>Excreted</td>
<td>• 90% by the Kidneys</td>
</tr>
</tbody>
</table>
Pharmacokinetics of Ketamine

• Despite the “Dirty” non-specific nature of Ketamine, it has a wide margin of safety; several instances of unintentional administration of overdoses of ketamine (up to ten times that usually required) have been followed by prolonged but complete recovery.

• Ketamine has been studied in over 12,000 operative and diagnostic procedures, involving over 10,000 patients from 105 separate studies. During the course of these studies ketamine hydrochloride was administered as the sole agent, as induction for other general agents, or to supplement low-potency agents.
Results

In these studies, the anesthesia was rated either "excellent" or "good" by the anesthesia provider and the surgeon at 90% and 93%, respectively; rated "fair" at 6% and 4%, respectively; and rated "poor" at 4% and 3%, respectively. In a second method of evaluation, the anesthesia was rated "adequate" in at least 90% and "inadequate" in 10% or less of the procedures.
Future of Ketamine

• Currently ketamine is seeing a bit of a renaissance in anesthesia as more providers are exploring it’s usefulness in low doses and in combination with other anesthetics and anxiolytics.

• Also, Ketamine is seeing wide use in non-anesthesia treatments. While I think it would be a mistake to consider ketamine a panacea in mental health, promising Studies are being done examining the effects of ketamine on depression, suicidal ideations, drug dependence and abuse, PTSD and chronic regional pain syndrome.
Ketamine for Depression

• Multiple small studies have shown immediate and profound alleviation of depression symptoms in up to 75% of patients that have been refractory to conventional anti-depressants.

• The NIMH is conducting large scale studies with an estimation completion date of mid-late 2018.

• Most studies used a low and slow method of infusion (0.5-1mg/kg infusion over an hour) with 6 infusions over an initial 2 week period.

• Length of anti-depressant results varied but majority of patients went 2 months or greater before booster infusion needed.
Ketamine for Depression

Findings from one meta analysis by Han et al in Neuropsychiatric Treatment and Disease Journal in 2016 that looked at 9 high quality studies with 368 patients found:

Conclusion

• “These results indicated that ketamine could yield a good efficacy in the rapid treatment of MDD. Future large-scale clinical studies are needed to confirm our results and investigate the mid- and long-term efficacy of ketamine in treating MDD.”
Ketamine for PTSD

The first evidence from a randomized clinical trial that the anesthetic agent ketamine may provide rapid symptom reduction in patients with chronic posttraumatic stress disorder (PTSD) when delivered intravenously was published in 2014.

• In it, researchers led by Adriana Feder, MD, found that intravenous (IV) infusion of ketamine hydrochloride (0.5 mg/kg) was associated with significant and rapid reduction of PTSD symptom severity compared with an active control agent.

• Study was small and is considered a proof of concept study only at this point.

• Ketamine clinic in San Antonio area treating large amount of military PTSD patients with reportedly great results.
Ketamine for Suicidal Patients in the ED

Suicidal ideation is an emergent problem in the Emergency Department (ED) that often complicates patient disposition and discharge. It has been shown that ketamine possesses fast acting antidepressant and anti-suicidal effects.

• The NIMH reviewed 4 studies and found that a decrease in suicidal ideation was independent of improvements in mood.

• Low dose IV Ketamine often can be an effective immediate short term treatment for Emergency Room patients with suicidal ideations. (as an aid to help patients to enter into long term conventional treatment regimens)
Ketamine for Migraines

Studies:

• Dr. Carlos Zarate, a Chief researcher at the National Institute of Mental Health, says that “we can take care of a migraine in hours” using ketamine.

• Dr. Zarate is mainly focused on using Ketamine for treating major depressive disorders, however there have been several studies geared toward treating Migraines.

• One study tested the effects of intranasal Ketamine on 11 patients with familial hemiplegic migraines. Under supervision, each participant was given a 25 mg dose via a nasal spray at the onset of a Migraine attack. They were asked to record their symptoms 15 minutes after each use and were then allowed to administer Ketamine at home. During the study, over half of the participants reported an improvement of all of their symptoms after using Ketamine.
Ketamine for Migraines

• In a separate study, researchers examined the effects of IV Ketamine infusions of participants who were actively having a Migraine attack. Over 159 minutes, participants were given 64 mg of Ketamine through an IV.

• On a 1-10 pain scale, participants had an average pain score of 6 before treatment. After the Ketamine infusion, the average pain score reduced to 2.5.
The most promising study was performed by the late Dr. Andrew Sewell on a Ketamine web forum. 247 patients participated in an open outpatient study that used IV infusions of Ketamine. The participants represented five different types of Migraine sufferers. Every group reported at least a 50% reduction in their headaches.

- In 162 patients with **Refractory Migraines**, 150 reported greater than 50% reduction in their pain.
- In 39 patients with **Chronic Migraine**, 26 reported greater than 50% reduction in their pain.
- In 4 patients with **Paroxysmal Hemicrania**, all 4 reported complete resolution of their pain for an average of 7 days.
- In 11 patients with **Cluster Headaches**, all 11 reported complete resolution of their pain for an average of 6 days.
- In 31 patients with **non-specific headache** type and facial pain, 25 patients reported greater than 50% reduction in their pain.
Ketamine for Chronic Regional Pain Syndrome

Besides anesthesia implications, Ketamine for CRPS is probably the most studied use of Ketamine:

• Dose, length and frequency of infusions varied greatly from study to study

• Some studies used much higher doses and inpatient setting and some were outpatient with much lower doses

• Majority of the studies have shown a significant reduction in pain scores for up to ten days post infusion
Ketamine for CRPS

Complex Regional Pain Syndrome:

• Six studies focused exclusively on the use of ketamine infusions for the treatment of CRPS.

• The majority of these articles report pain relief of several weeks after an infusion in an inpatient setting over 4 to 5 days.

• However, outpatient infusion protocols requiring multiple serial infusions also reported pain relief lasting several months in some cases.

• Although the general trend when all studies are considered is that longer durations provide increased duration of pain relief, there may be an optimal infusion duration of several hours beyond which no benefit is derived but the potential for side effects increases.
Fibromyalgia:

- Three studies focused on the use of ketamine infusions for the treatment of fibromyalgia.
- All 3 studies utilized a relatively low dose of ketamine between 0.3 and 0.5 mg/kg administered over 10 to 30 minutes.
- No study reported benefits beyond the first few hours after the infusion. It is not certain whether this is because of a lack of responsiveness of fibromyalgia pain to ketamine infusions or whether a higher dose is required to produce longer lasting analgesia.
- The changes in pain scores after the infusion in 2 studies are encouraging and suggest that further optimization of dose and duration may provide some degree of relief.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Clinical Indication</th>
<th>Study Size</th>
<th>Study Design</th>
<th>Duration of Infusion</th>
<th>Study Setting</th>
<th>Dose Range</th>
<th>Combination Therapy</th>
<th>Duration of Pain Relief</th>
<th>Secondary Outcomes</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigtermans et al²</td>
<td>CRPS-1</td>
<td>60</td>
<td>PRCT parallel</td>
<td>100 h continuously</td>
<td>IP</td>
<td>22.2 mg/h normalized to a 70-kg patient. 0.43 mg/kg/h maximum. S(+)-ketamine used.</td>
<td>None</td>
<td>Decreased NRS-11 compared with placebo until 11 wk.</td>
<td>No difference in: 1. Ketamine increased the incidence of nausea, vomiting, psychomimetic effects.</td>
<td></td>
</tr>
<tr>
<td>Schwartzman et al³</td>
<td>CRPS</td>
<td>19</td>
<td>PRCT parallel</td>
<td>4 h for 10 nonconsecutive days</td>
<td>OP</td>
<td>100 mg over 4 h. 0.35 mg/kg/h maximum. 0.1 mg PO clonidine and 4 mg IV midazolam at the start of each daily infusion</td>
<td>1 Decrease in sensory and affective components of the MPQ at 12 wk.</td>
<td>No difference in 2 quality of life questionnaires.</td>
<td>1. Four ketamine patients and 2 placebo patients experienced side effects, including nausea, headache, and tiredness. 2. No patient reported hallucinations or dysphoria.</td>
<td></td>
</tr>
<tr>
<td>Koffler et al²</td>
<td>CRPS-1</td>
<td>9</td>
<td>PONRT</td>
<td>4.5 d continuously in an inpatient ICU setting</td>
<td>IP</td>
<td>3–7 mg/kg/h target serum level of 250–300 µg/dL resulting in medically induced coma.</td>
<td>Supportive ICU care</td>
<td>1 Decrease in acute pain measured by MPQ at 6 wk.</td>
<td>1. All patients successfully weaned from opioid therapy at 6 wk. Weakness, dizziness, fatigue, hyperhidrosis, sensation of warmth, and slight anxiety reported at 2 wk. No side effects reported at 6 wk.</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Reference</th>
<th>Clinical Indication</th>
<th>Study Size</th>
<th>Study Design</th>
<th>Duration of Infusion</th>
<th>Study Setting</th>
<th>Dose Range</th>
<th>Combination Therapy</th>
<th>Duration of Pain Relief</th>
<th>Secondary Outcomes</th>
<th>Side Effects</th>
</tr>
</thead>
</table>
| Kiefer et al⁶ | CRPS-1 | 20 | PONRT | 5 d continuously in an inpatient ICU setting. | IP | Bolus of 1–1.5 mg/kg, then 3 mg/kg/h and increased to 7 mg/kg/h. | 1. Bolus of 2.5–7.5 mg midazolam, followed by infusion at 0.15–0.4 mg/kg/h.
2. Clonidine 0.2–0.85 µg/kg/h.
3. Supportive ICU care. | 1. Pain relief at 1 wk, 1 mo, 3 mo, and 6 mo.
2. Recrudescence of CRPS symptoms in 6/20 patients at 6 mo and at lower intensities. | None. | Improved quality of life measured by WHYMPI. |
| Goldberg et al⁷ | CRPS-1 | 16 | PONRT | 5 d continuously in an inpatient setting. | IP | 10 mg/h increased to a maximum rate of 40 mg/h. | 1. Midazolam 2–4 mg Q4h PRN.
2. Clonidine 0.1 mg/d transdermal.
3. Inpatient supportive care. | 1. Pain relief starting at 3 d.
2. Sixty percent of patients reported pain relief lasting for 4 mo.
3. Forty percent of patients reported pain relief lasting for 6 mo.
| Correll et al⁸ | CRPS-1 and 2 CPRS-1 RS and 2 CPRS-2 | 31 | Inpatient | Continued for as long as patient tolerated infusion. Ten patients received a second infusion and 2 received a third infusion. | IP | 10 mg/h. Increased as tolerated. Average maximum tolerated infusion rate 23.4 mg/h. | None. | 1. After first infusion, average duration of relief 9.44 mo.
2. After second infusion, average duration of pain relief 25 mo. | 1. Sensation of inebriation was used as the end point for titration and universally noted.
2. No patient experienced sedation.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Clinical Indication</th>
<th>Study Size</th>
<th>Study Design</th>
<th>Duration of Infusion</th>
<th>Study Setting</th>
<th>Dose Range</th>
<th>Combination Therapy</th>
<th>Duration of Pain Relief</th>
<th>Secondary Outcomes</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elde et al.</td>
<td>Traumatic spinal cord injury</td>
<td>9</td>
<td>PRCT crossover</td>
<td>17–21 min</td>
<td>IP</td>
<td>60 μg/kg bolus infusion of 6 μg/kg</td>
<td>None.</td>
<td>Decreased continuous VAS pain intensity and allodynia compared with placebo immediately after infusion.</td>
<td>1. No change in heat pain threshold.</td>
<td>Five patients reported side effects with modest dizziness being most common.</td>
</tr>
<tr>
<td>Kvarnström et al</td>
<td>Traumatic spinal cord injury</td>
<td>10</td>
<td>PRCT crossover</td>
<td>40 min</td>
<td>Not reported</td>
<td>0.4 mg/kg of ketamine.</td>
<td>None.</td>
<td>Five of 10 had a 50% reduction in VAS immediately.</td>
<td>2. No change in wind up-like pain.</td>
<td>Quantitative sensory testing, vibratory testing, thermal threshold testing were equivalent between the placebo and the ketamine group.</td>
</tr>
<tr>
<td>Amr</td>
<td>Traumatic spinal cord injury</td>
<td>40</td>
<td>PRCT crossover active placebo</td>
<td>5 h</td>
<td>IP</td>
<td>80 mg ketamine.</td>
<td>1. 2–5 mg IV midazolam.</td>
<td>Reduction of pain immediately after and 2 wk after infusion.</td>
<td>None.</td>
<td>None.</td>
</tr>
<tr>
<td>Eichenberger et al</td>
<td>Phantom limb pain</td>
<td>10</td>
<td>PRCT crossover</td>
<td>1 h</td>
<td>OP</td>
<td>0.4 mg/kg ketamine.</td>
<td>One arm of study combined ketamine infusion with a 200 IU calcitonin infusion over 1 h.</td>
<td>1. Six of 10 patients reported a 50% reduction in VAS.</td>
<td>1. Study not powered to detect changes in pain threshold or pain tolerance.</td>
<td>Five patients experienced visual hallucinations, hearing impairments.</td>
</tr>
<tr>
<td>Kim et al.</td>
<td>PHN</td>
<td>30</td>
<td>PRNCT 15 ketamine 15 MgSO₄</td>
<td>1 h every other day for 3 d</td>
<td>IP</td>
<td>0.1 mg/kg ketamine or 30 mg/kg of MgSO₄</td>
<td>0.1 mg/kg midazolam to render patients unconscious.</td>
<td>1. Decreased mean VAS at 2 wk for both ketamine and MgSO₄ from baseline but no group difference.</td>
<td>1. Ketamine group had improved allodynia and electrical pain.</td>
<td>The most common complications reported in both infusion groups included somnolence and dizziness.</td>
</tr>
<tr>
<td>Reference</td>
<td>Clinical Indication</td>
<td>Study Size</td>
<td>Study Design</td>
<td>Duration of Infusion</td>
<td>Study Setting</td>
<td>Dose Range</td>
<td>Combination Therapy</td>
<td>Duration of Pain Relief</td>
<td>Secondary Outcomes</td>
<td>Side Effects</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Eide et al13</td>
<td>PHN</td>
<td>8</td>
<td>PRCT crossover</td>
<td>10 min</td>
<td>IP</td>
<td>0.15 mg/kg ketamine.</td>
<td>None.</td>
<td>2. No difference in DN4 scale at 2 wk.</td>
<td>2. Painful cold and tingling sense improved in MgSO\textsubscript{4} group.</td>
<td>All patients experienced some degree of nonspecified unpleasant side effects.</td>
</tr>
<tr>
<td>Graven-Nielsen et al (Part 1)14</td>
<td>Fibromyalgia</td>
<td>29</td>
<td>PRCT crossover</td>
<td>30 min</td>
<td>OP</td>
<td>0.3 mg/kg ketamine.</td>
<td>None.</td>
<td>1. Reduced pain immediately after infusion.</td>
<td>1. No changes in thresholds for cold, warm, heat pain, or tactile sensations.</td>
<td></td>
</tr>
<tr>
<td>Graven-Nielsen et al (Part 2)14</td>
<td>Fibromyalgia</td>
<td>15</td>
<td>PRCT crossover</td>
<td>30 min</td>
<td>OP</td>
<td>0.3 mg/kg ketamine.</td>
<td>None.</td>
<td>1. Seventeen patients reported at least a 50% reduction in VAS.</td>
<td>2. Seven patients did not report a 50% reduction in VAS.</td>
<td>3. Five patients reported at least a 50% reduction in VAS in response to saline placebo.</td>
</tr>
<tr>
<td>Sørensen et al15</td>
<td>Fibromyalgia</td>
<td>11</td>
<td>PRCT crossover</td>
<td>10 min</td>
<td>Not reported</td>
<td>0.3 mg/kg ketamine.</td>
<td>None.</td>
<td>1. No change in VAS duration.</td>
<td>1. Reduced IM saline induced VAS pain area and peak.</td>
<td>None.</td>
</tr>
<tr>
<td>Sørensen et al15</td>
<td>Fibromyalgia</td>
<td>11</td>
<td>PRCT crossover</td>
<td>10 min</td>
<td>Not reported</td>
<td>0.3 mg/kg ketamine.</td>
<td>None.</td>
<td>1. Reduced VAS at 20 and 80 min after infusion.</td>
<td>1. Increased pressure pain threshold at 20 and 80 min.</td>
<td>None.</td>
</tr>
<tr>
<td>Reference</td>
<td>Clinical Indication</td>
<td>Study Size</td>
<td>Study Design</td>
<td>Duration of Infusion</td>
<td>Study Setting</td>
<td>Dose Range</td>
<td>Combination Therapy</td>
<td>Duration of Pain Relief</td>
<td>Secondary Outcomes</td>
<td>Side Effects</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Noppers et al(^{16})</td>
<td>Fibromyalgia</td>
<td>24</td>
<td>PRCT parallel active placebo</td>
<td>30 min</td>
<td>OP</td>
<td>0.5 mg/kg of S(+)-ketamine or 5 mg IV midazolam.</td>
<td>None.</td>
<td>1. Both groups reduced NRS-11 pain at 90 and 180 min.</td>
<td>None.</td>
<td>No difference in psychedelic effects measured by Bowdle questionnaire.</td>
</tr>
<tr>
<td>Mercadante et al(^{17})</td>
<td>Cancer-induced neuropathy</td>
<td>8</td>
<td>PRCT parallel</td>
<td>30 min</td>
<td>OP</td>
<td>0.25 mg/kg of ketamine or 0.5 mg/kg ketamine.</td>
<td>None.</td>
<td>1. All patients reported decreased pain after both doses at 3 h.</td>
<td>None.</td>
<td>1. Four patients reported visual hallucinations after the 0.5-mg/kg infusion and 1 after the 0.25-mg/kg infusion. 2. No changes in MNSE.</td>
</tr>
<tr>
<td>Jackson et al(^{18})</td>
<td>Cancer pain</td>
<td>29</td>
<td>PONRT</td>
<td>3–5 d</td>
<td>IP</td>
<td>100 mg/24 h for day 1, 300 mg/24 for day 2, and 500 mg/24 h thereafter.</td>
<td>All patients were taking concurrent opioids.</td>
<td>1. Five of 29 initial respondents had pain within 24 h of cessation of infusion.</td>
<td>None.</td>
<td>12 patients reported psychomimetic effects with increased incidence at higher doses.</td>
</tr>
<tr>
<td>Salas et al(^{19})</td>
<td>Cancer pain refractory to opioids</td>
<td>20</td>
<td>PRCT</td>
<td>48 h</td>
<td>IP</td>
<td>0.5 mg/kg for 24 h, increased to 1 mg/kg if NPIS >1.</td>
<td>All patients received 1 mg/kg MSO₂ if opioid naive. Equivalent opioid dose if not naive.</td>
<td>1. Maximum duration of relief was 8 wk. NPIS equivalent between the 2 groups at 2 h, 24 h, and 48 h postinfusion.</td>
<td>1. No differences in MSO₂ utilization were noted.</td>
<td>No difference in ESS. 2. No differences in patient satisfaction were noted. 3. No difference in ESAS.</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Reference</th>
<th>Clinical Indication</th>
<th>Study Size</th>
<th>Study Design</th>
<th>Duration of Infusion</th>
<th>Study Setting</th>
<th>Dose Range</th>
<th>Combination Therapy</th>
<th>Duration of Pain Relief</th>
<th>Secondary Outcomes</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tawfic et al</td>
<td>Sickle cell crisis</td>
<td>9</td>
<td>RS</td>
<td>2–5 d</td>
<td>IP</td>
<td>0.25 mg/kg ketamine bolus followed by 0.5–1 mg/h.</td>
<td>1. Improved pain scores compared with baseline on first day.</td>
<td>1. Lower MSO₂ requirement compared with baseline.</td>
<td>1. One patient had psychomimetic effects.</td>
<td></td>
</tr>
<tr>
<td>Kang et al</td>
<td>Mixed neuropathic pain</td>
<td>103</td>
<td>PONRT</td>
<td>2 h for 3 sessions</td>
<td>IP</td>
<td>0.2 mg/kg bolus; 0.5 mg/kg ketamine.</td>
<td>Decreased VAS compared with baseline 2 wk after treatment.</td>
<td>None.</td>
<td>2. Five patients had pre-existing nausea, which continued during the study period. 50% of patients reported adverse events either during or after infusions, including snoring, muscle movement, decreased HR, decreased BP and increased BP. Some patients reported dysphoria.</td>
<td></td>
</tr>
<tr>
<td>Leung et al</td>
<td>Mixed neuropathic pain</td>
<td>12</td>
<td>PRCT parallel</td>
<td>20 min</td>
<td>OP</td>
<td>Target plasma level of 50, 100, and 150 ng/mL.</td>
<td>Compared with alfentanil with a target plasma concentration of 25, 50, 75 ng/mL or a diphenhydramine placebo control.</td>
<td>1. Concentration-dependent reduction in stroking pain immediately after the infusion.</td>
<td>1. Both ketamine and alfentanil decreased the stroking-evoked and cold allodynia areas.</td>
<td>1. A third of patients receiving ketamine developed lightheadedness.</td>
</tr>
<tr>
<td>Max et al</td>
<td>Mixed neuropathic pain</td>
<td>8</td>
<td>PRCT parallel</td>
<td>2 h</td>
<td>OP</td>
<td>0.75 mg/kg/h, doubled at 60 and 90 min if no analgesic benefit.</td>
<td>One study arm combined with alfentanil at 1.5 µg/kg/mL.</td>
<td>1. Equivalent decrease in pain after the infusion. Side effects occurred before the onset of pain relief.</td>
<td>Three patients experienced dissociative reactions. Two patients each experienced muteness, nausea, and dizziness.</td>
<td></td>
</tr>
<tr>
<td>Feilsby et al</td>
<td>Mixed neuropathic pain</td>
<td>10</td>
<td>PRCT, crossover</td>
<td>Up to 1 h</td>
<td>OP</td>
<td>0.84 µg/kg over 10 min; 1.3 µg/kg/h infusion.</td>
<td>None.</td>
<td>1. VAS and reduced area of allodynia were related after infusion.</td>
<td>1. Ketamine reduced VAS scores.</td>
<td>1. No significant hemodynamic changes.</td>
</tr>
<tr>
<td>Reference</td>
<td>Clinical Indication</td>
<td>Study Size</td>
<td>Study Design</td>
<td>Duration of Infusion</td>
<td>Study Setting</td>
<td>Dose Range</td>
<td>Combination Therapy</td>
<td>Duration of Pain Relief</td>
<td>Secondary Outcomes</td>
<td>Side Effects</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Jarum et al²³</td>
<td>Mixed neuropathic pain diagnoses</td>
<td>10</td>
<td>PRCT, crossover, active control</td>
<td>25 min</td>
<td>OP</td>
<td>60 μg/kg over 5 min, 6 μg/kg/h infusion</td>
<td>None.</td>
<td>Decreased VAS for spontaneous pain immediately after infusion.</td>
<td>2. Ketamine reduced area of allodynia.</td>
<td>2. Psychomimetic effects were common after ketamine infusions. 1. Dizziness was more common in patients who received ketamine.</td>
</tr>
<tr>
<td>Patil and Anitescu²⁷</td>
<td>18 CRPS, 8 chronic headache and 7 LBP mixed neuropathic pain diagnoses</td>
<td>49 patients RS 369 infusions</td>
<td>CRPS average 43.5 min every 30.8 d. Non-CRPS average 34.7 min every 34 d</td>
<td>CRPS average 43.5 min every 30.8 d. Non-CRPS average 34.7 min every 34 d</td>
<td>OP</td>
<td>Average CRPS dose 1.0 mg/kg. Average non-CRPS dose 0.9 mg/kg.</td>
<td>None.</td>
<td>27% report relief lasting several hours, 73% report relief lasting more than 1–2 d, 38% report relief lasting more than 3 wk.</td>
<td>1. Reduced hyperalgesia to cold pain without alteration in cold pain threshold. 2. Decreased radiation from the site of cold pain. 3. Attenuation of mechanalodynia.</td>
<td>2. Other side effects were similar in frequency when compared with aftenantil. 3. Minimal side effects reported in all patients.</td>
</tr>
<tr>
<td>Polomano et al²³</td>
<td>Neuropathic pain after combat limb injury</td>
<td>19</td>
<td>RS</td>
<td>3 d</td>
<td>IP</td>
<td>120 μg/kg/h ketamine.</td>
<td>None.</td>
<td>1. Reduced PPI over the study period.</td>
<td>1. No change in opioid use during infusion.</td>
<td>1. Hypertension and sedation were the most common side effects. 2. Higher incidence of hallucination and confusion in patients without CRPS. 3. Four patients reported feeling drowsy on days 1 and 2.</td>
</tr>
</tbody>
</table>

Abbreviations: AROM, active range of motion; BDI, Beck Depression Inventory; BPs, blood pressure; CCPT, Connor's Continuous Performance Test; CRPS, complex regional pain syndrome; DN4, Douleur Neuropathique 4 Score; ESAS, Edmonton Symptom Assessment Scale; ESS, Epworth Sleep Scale; FQ, Fibromyalgia Impact Questionnaire; GPR, Global Pain Relief; HP, habitual pain; HVLT, Hopkins Verbal Learning Test; HR, heart rate; ICU, intensive care unit; IU, international units; IM, intramuscular; IP, intrapatient; MgSO₄, magnesium sulfate; MSO₄, morphine sulfate; MMSE, Mini-Mental Status Examination; MPQ, Short-Form McGill Pain Questionnaire; NRS-11, 11-point numerical rating scale; NPI, Neuromic Pain Intensity Scale; OP, outpatient; PHE, postherpetic neuralgia; PO, oral; PODRT, prospective observational nonrandomized trial; PPI, present pain intensity; PPT, pressure point pain measured at the infraspinausus; PRCT, prospective; randomized control trial; PRI, Pain Rating Index; PRN, pro re nata; PRNT, prospective randomized noncontrolled trial; RASQ, Radboud Skills Questionnaire; RS, repeated stimulation; WQ, Walking Ability Questionnaire; WHYMPI, West Haven-Yale multidimensional pain inventory; VAS, visual analog scale.
Ketamine Infusion Centers

• Most are owned by either Psychiatrist or Anesthesia Professionals
• Can be a stand alone center or in combination with a physician office practice
• Average square feet needed will be around 2,000sq/feet
• Ideally need a consultation room, waiting room for family, and 2-4 infusion rooms
Ketamine Infusion Centers

• Most free standing centers are set up as physician office extension
• Need a DEA number to order drugs and some supplies
• Need to establish protocols for handling scheduled drugs
• Security is a big concern
• AANA Ketamine clinic check list:
 • https://www.aana.com/docs/default-source/practice-aana-com-web-documents-(all)/ketamine-infusion-therapy-checklistf8fb24731dff6d9bb37c0000940c19.pdf?sfvrsn=cc0549b1_6
Ketamine for Chronic Pain Protocol

1. Mix Either 100mg Ketamine/100cc or 250mg/100cc
2. Calculate initial dose of 1.2mg/kg
3. Run initial infusion at 0.6mg/kg/hour
4. Monitor for at least 30 minutes prior to D/C
5. Administer adjuncts as needed (Versed/Zofran)
6. Assess VAS Pain score:
 - Before Each Infusion
 - After Each Infusion
 - Weekly for First Month
 - Monthly for First Year
Clinical Specialist: Call patient 24-48 hours, then every week for first month, then monthly thereafter. Patient to be instructed to call with any recurrent pain.
Protocol:

1. **MIXING KETAMINE**
 - Ketamine will be mixed in a 100ml or 250ml bag of saline at a concentration of 100mg/100ml or 250mg/250 ml bag.

2. **DO dosage**
 - Ketamine 1.2mg per kg of patient body weight

3. **INFUSION RATE**
 - Infuse at a rate of 0.6mg per kg per hour as tolerated.
 - Rate may be changed at the discretion of the CRNA based on patient’s tolerance of the infusion.

4. **ADJUNCT MEDICATION**
 - Midazolam may be administered at the CRNAs discretion at a dosage of 1-2 mg prior to starting or at any time during the infusion for anxiety or other unpleasant psychological effects.
Ketamine for Depression Protocol

Mix Either 100mg Ketamine/100cc or 250mg/100cc

Calculate initial dose of 0.5mg/kg

Run initial infusion at 0.5mg/kg/hour

Asses Ham D:
Before First Infusion
After 3-6 Infusions
Every other Week for First Month
Monthly for First Year

Monitor for at least 30 minutes prior to D/C

Administer adjuncts as needed (Versed*/Zofran)
Life of a TRDPatient:

- **Self-Referral Patient**
 - Patient referred to Mental Health Provider
 - Patient is charged $150 for scheduling fee/initial assessment
 - Patient is sent Screening Packet Documentation

- **Clinician Referred Patient**
 - Interview and Assessment conducted; Patient approved for infusion.
 - 1st Infusion. (If it has been 2 weeks since HAM-D was performed then perform another one.)
 - 2nd Infusion
 - 3rd Infusion
 - 24-48 hours after 3rd infusion, call will be made to patient to determine clinical appropriateness regarding next set of infusions.

- **Interview and infusion date scheduled**
 - Perform HAM-D prior to 4th infusion in order to aggregate data

- **Infusions 4, 5, & 6**
 - Doesn’t meet Clinical Appropriateness
 - Meets Initial Clinical Appropriateness

- **Mental Health Specialist:** Call patient 24-48 hours, then every 2 weeks for first month, then monthly thereafter.
TRD Infusion Protocol:

1. Make sure patient has a patent and secure IV access according to IV access policy.

2. Prepare ketamine bag for infusion.
 a. Dilute ketamine in a bag of 100ml of Normal Saline to achieve concentration of 100mg/ml of Ketamine.
 b. Begin infusion at 0.5mg/kg/hour and infuse for one hour per an electronic infusion pump.

3. At the discretion of the CRNA, patients who are very anxious may receive 1-2mg Midazolam prior to infusion begins. This must be given by the CRNA.

4. Patients who experience unpleasant psychological affects that are not well tolerated during the infusion may be given 1-2mg Midazolam by the CRNA at the CRNA’s discretion. The infusion may be held for 5 minutes by the CRNA to allow the midazolam to begin to take affect before restarting the infusion.

5. If the patient continues to not tolerate unpleasant psychological side effects or if the patient becomes too sedated to remain in constant verbal contact during the infusion, the CRNA may decrease the rate of infusion or may discontinue the infusion at his/her discretion. The goal is to infuse ketamine for a period of one hour without achieving a state of deep sedation or anesthesia.

6. Patients should be communicated with verbally at a minimum of every ten minutes with the patient being able to voice satisfaction with the progress of the treatment, which shall be documented as well as level of consciousness documented every ten minutes as well.

7. If patient becomes too sedated to communicate appropriately, anesthesia must evaluate to determine if the infusion rate needs to be reduced or terminated.

8. Only anesthesia can start the infusion or change the rate of the infusions.

9. Patient vital signs (BP, HR, Resp Rate, SpO2) shall be monitored and documented prior to infusion for a baseline and at least every ten minutes during the infusion.
10. Anesthesia personnel shall be notified immediately of any significant deviation from the baseline vital signs.

11. Anesthesia personnel must stay in the facility during all infusions and until the patient is fully recovered from the infusion therapy.

12. At the conclusion of the infusion, anesthesia personnel must document the total amount of ketamine infused in the record.

13. All drug waste shall be witnessed and documented by two licensed personnel.

14. Patient can be discharged if all criteria are met after 30 minutes post infusion with post infusion instructions given to patient and caregiver.
Infusion Vital Sign Log Sheet

Patient Name: ____________ **Date:** ____________ **Weight:** ____________

Infusion Started by: ____________ **Time:** ____________ **Rate:** ____________

Baseline VS Prior to Infusion: ____________

Allergies: ____________

<table>
<thead>
<tr>
<th>Time: (q 10 min)</th>
<th>B/P</th>
<th>Pulse Ox</th>
<th>Pulse/Resp</th>
<th>Infusion Rate</th>
<th>Verbal Response</th>
<th>Staff Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV start @ ____________ **Site/Size:** ____________ **By:** ____________ **IV D/C intact @** ____________ **By:** ____________

Total Ketamine Infused: ____________ mg **Duration of Infusion:** ____________ minutes

Notes: ____________

Staff Signature: ____________ **Initials:** ____________

Staff Signature: ____________ **Initials:** ____________

I have assessed the patient and have determined that he/she is recovered from ketamine infusion sufficiently to be safely discharged home with a responsible party with discharge instructions given per Neuromend staff.

__________________________ **CRNA** ___________________________ **Date/Time**
Ketamine Infusion Therapy

Considerations Checklist

Ketamine infusion therapy involving the administration of a single infusion or a series of infusions for the management of psychiatric disorders (e.g., major depressive disorder, post-traumatic stress disorder) or chronic pain has grown over several decades. Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist that has traditionally been used for the induction and maintenance of anesthesia. As ketamine infusion clinics in healthcare facilities become available, certified registered nurse anesthetists (CRNAs) are providing ketamine therapy services as part of the patient’s management.

This checklist provides considerations for administration of ketamine infusion therapy and is not intended to be all inclusive.

- Review and complete applicable elements of the Considerations for Adding New Activities to Individual CRNA Scope of Practice
- State scope of practice
 - Establish State Association of Nurse Anesthetists (SANA) relationship(s), as appropriate, with SANA board of directors, committees, and lobbyist/lawyer.
 - Review applicable state nursing, medical, drug and facility statutes and regulations to identify existing and anticipated practice barriers.
 - Verify whether the state board of nursing or other relevant board has issued a related opinion applicable to RNs and/or CRNAs
- Determine employment arrangement (AANA member login required)
 - Employee of facility or independent contractor
 - Starting Your Own Business Checklist
 - CRNA Independent Contractor Agreement Checklist
 - CRNA Employment Agreement Checklist
 - Establish contract for services
 - Anesthesia Services Agreement Checklist
 - Anesthesia Services Agreement (template; adapt to employment needs)
- Malpractice insurance
 - Who will provide insurance?
 - Verify coverage for specific procedures
- Considerations for clinic infrastructure, operations, and policies
 - Market assessment
 - Is there a need for this service in your area?
 - What type of patient volume can you expect?
 - Identify competitors within your area.
 - What are your barriers?
 - What are the costs?
- Process for referrals
 - Establish relationships with primary care and specialty clinicians
 - Will local clinicians refer to a CRNA?
 - What clinicians can make referrals (e.g., MD, APRN, PA)?
 - Patient scheduling process
 - Identify clinic personnel and outline roles
- Accreditation
 - Who accredits the facility?
 - What are the applicable standards?
- Identify requirements for credentialing within the facility
- Evaluate staff
 - Education, skills, and expertise
 - Is additional training required for clinic staff?
 - Develop competency evaluation
- Clinic location and equipment
 - Accessibility to patients
 - Comfortable infusion rooms
 - Recovery area
 - Determine cost-benefit of equipment based on patient safety and clinic needs
 - Required equipment
 - Standard equipment
 - Monitoring equipment
 - Emergency equipment readily available
 - Crash cart
 - Emergency airway management
- Patient eligibility
 - Consultation with primary and and/or specialty clinicians
 - Understand contraindications to ketamine
 - Patient selection criteria
 - Physical status 1 & 2 are typically candidates for ketamine infusion
 - Physical status 3 & 4 may be considered, but require additional precautions
- Documentation
 - Electronic or paper record
 - Procedure-specific forms
 - Document pertinent information on the patient’s healthcare record in an accurate, complete, legible, and timely manner
 - Informed consent
 - Include risks, benefits, and potential side effects, as well as alternative therapies and their risks, benefits, and potential side effects
 - Manage treatment expectations
- Treatment and management
 - Consult ketamine package insert and current literature for drug-specific considerations, contraindications, dosages, side effects, etc.
 - Ketamine therapy is not a first line treatment
 - Consider only after failure of standard medical treatment
 - Pre-treatment consultation
 - History and physical
 - Patient receives medical clearance
 - General medical clearance
 - Specialty medical clearance (e.g., cardiac, neurological) as necessary based on history
 - Pre-procedure labs (e.g., liver function tests, creatinine)
 - Establish process for infusion and medication orders
 - Evaluate patient for contraindications to ketamine
 - Conduct anesthesia patient assessment and evaluation
 - NPO status
 - Administer pre-medication, as appropriate, to mitigate adverse events
 - Consider trial infusions to assess for responsiveness, efficacy, and tolerability of side effects, prior to prolonged daily treatment
 - Administration of ketamine (anesthesia professional)
 - Dosage
 - Volume
 - Frequency
 - Patient monitoring
 - Vital signs
 - Consciousness
 - Heart rate
 - Blood pressure
 - Respiratory rate
 - Oxygen saturation
 - Level of consciousness
 - End-tidal CO₂
 - ECG monitoring
 - Signs/symptoms of ketamine toxicity
 - Establish process of significant side effects
- Physician and/or anesthesia professional immediately available
- Recovery
 - Establish recovery criteria
 - Patient must be monitored until recommended recovery criteria are met
 - Establish recovery/discharge criteria
 - Recovery to pre-administration baseline levels
- Cardiovascular function
- Airway patency
- Oxygen saturation
- Patient reflexes and speech
- Respiratory rate

- Blood pressure
- Patient is awake
- Assess and treat nausea and vomiting
 - Patient and caregiver education
 - Patient sent home with appropriate driver/caregiver

- Follow-up
 - Treatment communication with patient care team, referring clinician, primary care clinician, etc.
 - Establish standardized testing tool for the facility to monitor progress
 - Psychological questionnaires
 - Pain assessment tools
 - Treatment regimen - # infusions administered over # days
 - Maintenance infusion(s)

- Drug disposal and diversion prevention
 - Implement proper drug disposal and wasting measures consistent with federal, state, and local law to prevent drug diversion and misuse
 - AANA recommendations on drug diversion prevention can be found in *Addressing Substance Use Disorder for Anesthesia Professionals*

- Continuous Quality Improvement
 - Tracking adverse events
 - Patient satisfaction

- Reimbursement
 - Verify insurance coverage (e.g., private, Medicare, Medicaid)
 - Many insurers may not cover treatment
 - Establish fee schedule
 - Establish collection method for self-pay patients
 - Know how clinic is billing for your services
 - Educate billing staff
 - Identify applicable billing codes

- AANA Resources
 - *Ketamine Infusion Therapy for Psychiatric Disorders and Chronic Pain Management, Practice Considerations*
 - *The Role of the CRNA on the Procedure Team*
 - AANA Professional Practice, practice@aana.com, 847-655-8870
 - Practice-related inquiries
 - AANA State Government Affairs, sga@aana.com, 847-655-1130
Future of Ketamine

• With so many off label uses being studied, some researchers are predicting that Ketamine will soon be listed as more than just an anesthetic.

• Researchers are also assessing similar compounds to Ketamine that could deliver similar results to Ketamine without the more untoward side effects and would be able to qualify for patent protection. Update 9/2/2018 J&J filed for FDA Marketing Application for Esketamine Nasal Spray for Depression.
The End: Q and A

Tracy P. Young, MSNA, MBA, CRNA